พฤติกรรมทางความร้อนในเครื่องแลกเปลี่ยนความร้อนชนิดท่อจัตุรัสที่ติดตั้งปีกบางขวางแนวการไหล Thermal Characteristics in a Square-Duct Heat Exchanger with Winglets Placed in Central Core Flow

> สุริยา โชคเพิ่มพูน<sup>1</sup> สุภัทรชัย สุวรรณพันธุ์<sup>2</sup> โชติวุฒิประสพสุข<sup>3</sup> และพงษ์เจต พรหมวงศ์<sup>4</sup>

Suriya Chokphoemphun<sup>1</sup>, Supattarachai Suwannapan<sup>2</sup>, Chotiwut Prasopsuk<sup>3</sup> andPongjet Promvonge<sup>4</sup>

<sup>1</sup>สาขาวิชาวิศวกรรมเครื่องกล คณะอุตสาหกรรมและเทคโนโลยี มหาวิทยาลัยเทคโนโลยีราชมงคลอีสาน วิทยาเขตสกลนคร 199 หมู่ 3 ถนนพังโคน-วาริชภูมิ ตำบลพังโคน อำเภอพังโคน จังหวัดสกลนคร 47160 E-mail : <u>chok\_suriya\_@hotmail.com</u> <sup>2</sup>สาขาวิชาวิศวกรรมเครื่องกล คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลอีสานวิทยาเขตขอนแก่น 150 หมู่ 6 ถนนศรีจันทร์ตำบลในเมือง อำเภอเมืองขอนแก่น จังหวัดขอนแก่น 30000E-mail : <u>oak\_su@hotmail.com</u> <sup>3</sup>สาขาวิชาเทคโนโลยีเครื่องกล คณะเทคโนโลยีอุตสาหกรรม มหาวิทยาลัยราชภัฏเทพสตรี 321 ถนนนารายณ์มหาราช ตำบลทะเลซุบศร อำเภอเมืองลพบุรี จังหวัดลพบุรี 15000 E-mail :<u>sompop2525@gmail.com</u> <sup>4</sup>สาขาวิชาวิศวกรรมเครื่องกล คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง ถนนฉลองกรุง เขตลาดกระบัง กรุงเทพฯ 10520E-mail :<u>kppongje@kmitl.ac.th</u>

#### บทคัดย่อ

งานวิจัยนี้ทำการศึกษาอิทธิพลของตัวสร้างความ ปั่นป่วนแบบปีกบางที่มีต่อการถ่ายเทความร้อนและ สมรรถนะเชิงความร้อนของเครื่องแลกเปลี่ยนความร้อน ชนิดท่อจัตุรัสปีกบางที่ใช้ในการทดสอบมีลักษณะที่ แตกต่างกันของมุมปะทะการไหล (**α**=30° 45° และ 60°) และอัตราส่วนความสูงปีก (BR=e/H=0.05 0.10 และ 0.15)ที่อัตราส่วนระยะพิตต์คงที่ (PR=P/H=1.0) ซึ่งปีกบาง จะถูกสอดใส่ในช่วงท่อทดสอบตามแนวทแยงมุมของหน้า ตัดและให้ปีกบางลอยอยู่บริเวณกลางหน้าตัดท่อทำการ ทดลองภายใต้เงื่อนไขสภาวะฟลักซ์ความร้อนที่ผิวคงที่ มี อากาศเป็นของไหลทำงานในช่วงการไหลแบบปั่นป่วนที่ เลขเรย์โนลด์มีค่าระหว่าง6000 ถึง 26,000ผลการศึกษา ของกรณีศึกษาทั้งหมดจะทำการเปรียบเทียบกับท่อผิว เรียบ พบว่าการใช้ปีกบางช่วยเพิ่มการถ่ายเทความร้อนและ ทำให้เกิดการสูญเสียความดันที่สูงกว่าท่อผิวเรียบและมีค่า เพิ่มขึ้นเมื่อมุมปะทะการไหลและอัตราส่วนความสูงปีกมีค่า สูงขึ้นภายใต้เงื่อนไขการศึกษานี้ ค่าการถ่ายเทความร้อน และตัวประกอบความเสียดทานเฉลี่ยมีค่าเพิ่มขึ้นจากท่อผิว เรียบประมาณ 1.55–2.29และ 2.27–8.48 เท่า ตามลำดับ ค่าสมรรถนะการเพิ่มการถ่ายเทความร้อนสูงสุดเท่ากับ 1.49 เกิดขึ้นในกรณีการใช้ปีกบางที่ Re=6500, **α**=30° และ BR=0.10.

คำสำคัญ: เครื่องแลกเปลี่ยนความร้อน, ท่อจัตุรัส, ปีกบาง

#### Abstract

This work presents the effect of winglet vortex generators on heat transfer and thermal performance enhancement of a square-duct heat exchanger. In the present work, the winglet with a three different attack angle ( $\mathbf{\alpha}$ =30° 45° and 60°) and three different winglet-height or blockage ratios (BR=e/H=0.05 0.10and 0.15) atfixed winglet (PR=P/H=1.0)were inserted pitch ratios diagonallyand placed in the core flow area into the test duct. The experiment was carried out in a uniform wall heat flux tube by varying turbulent airflow for Reynolds number (Re) ranging from 6000-26,000. The experimental results for the winglet at various parameters were evaluated and compared with those for the smooth tube. The measurement reveals that the winglet provides a considerable increase in the Nusselt number(Nu) and friction factor (f) above the smoothduct. The Nu and f increase with the increment of  $\boldsymbol{\alpha}$  and BR. The average Nu and for the winglet with various parameters are in the range of 1.55-2.29 and 2.27-8.48 times above the plain tube, respectively. The maximum thermal enhancement factor for using winglet tabulators is 1.49 at Re=6500, *Q*=30° and BR=0.1.

#### Keywords: heat exchanger, square-duct, winglets

#### 1. บทนำ

การศึกษาการเพิ่มการถ่ายเทความร้อนในเครื่อง แลกเปลี่ยนความร้อนนับว่าเป็นประโยชน์อย่างยิ่งต่อการ นำไปประยุกต์ใช้กับ อุปกรณ์แลกเปลี่ยนความร้อนชนิดต่าง ๆ ที่มีการใช้งานกันอย่างแพร่หลายในระบบอุตสาหกรรม โดยหากสามารถเพิ่มค่าสัมประสิทธิ์การถ่ายเทความร้อน หรือขีดความสามารถในการแลกเปลี่ยนความร้อนของ เครื่องแลกเปลี่ยนความร้อนได้ ทำให้กระบวนการในการ แลกเปลี่ยนความร้อนสั้นลงหรืออาจช่วยลดขนาดของ เครื่องแลกเปลี่ยนความร้อนลงได้ ด้วยเหตุผลดังกล่าวย่อม ส่งผลดีในแง่ของการประหยัดพลังงานและในแง่ของการ ลงทุน

ชุดทดสอบเครื่องแลกเปลี่ยนความร้อนที่นิยมใช้ใน การศึกษาวิจัยสามารถจำแนกตามลักษณะรูปร่างหน้าตัด ท่อได้เป็น 2 ลักษณะ ได้แก่ ท่อหน้าตัดกลมและท่อหน้าตัด สี่เหลี่ยมซึ่งมีลักษณะผิวภายในท่อที่แตกต่างกัน ดังนั้นตัว สร้างความปั่นป่วนที่นำมาใช้สำหรับการเพิ่มสมรรถนะของ อุปกรณ์แลกเปลี่ยนความร้อนจึงมีลักษณะความแตกต่าง กันตามความเหมาะสมของลักษณะผิวภายในของท่อโดย พบว่าวิธีการที่เป็นที่นิยมสำหรับการเพิ่มการถ่ายเทความ ร้อนในกรณีเครื่องแลกเปลี่ยนความร้อนชนิดท่อหน้าตัด กลมคือการสอดใส่ใบบิดและขดลวดในรูปแบบต่างๆ Eiamsa-ard และคณะ [1] น้ำเสนอถึงผลของมุมปะทะของ ป้กบนใบบิดและผลของการบิดสลับแกนของใบบิดที่มีต่อ การถ่ายเทความร้อน Murugesan และคณะ [2] ศึกษา อิทธิพลใบบิดที่มีการตัดขอบเป็นช่องสี่เหลี่ยมที่อัตราส่วน การบิดค่าต่าง ๆ ต่อการเพิ่มสมรรถนะเครื่องแลกเปลี่ยน ความร้อน Promvonge [3] นำเสนอผลศึกษาเปรียบเทียบ ระหว่างการใช้ขดลวดหน้าตัดสี่เหลี่ยมกับขดลวดหน้าตัด ้วงกลมที่มีต่อสมรรถนะการเพิ่มการถ่ายเทความร้อน ส่วน ในกรณีชนิดท่อหน้าตัดสี่เหลี่ยม ตัวสร้างการหมุนควงที่ นิยมนำมาประยุกต์ใช้ ได้แก่ ครีบ ปีกและแผ่นกั้นการไหล รูปแบบต่าง ๆ Zhou และ Ye [4] ทำการทดลองเพื่อศึกษา ถึงอิทธิพลของรูปทรงปีกลักษณะต่าง ๆ ได้แก่ ปีกสี่เหลี่ยม ปีกสามเหลี่ยม ปีกสี่เหลี่ยมคางหมูและปีกสี่เหลี่ยมคางหมู แบบผิวโค้งที่มีต่อคุณลักษณะทางความร้อน Tanda [5] ศึกษาการเพิ่มการถ่ายเทความร้อนโดยการใช้ครีบวางขวาง แบบต่อเนื่องและแบบแยกตัว ครีบวางทำมุมแบบแยกตัว

Chompookham และคณะ [6] น้ำเสนออิทธิพลของการ ใช้ครีบและปีกที่มีต่อพฤติกรรมการถ่ายเทความร้อนและ สมรรถนะการเพิ่มการถ่ายเทความร้อนสำหรับการไหลแบบ ้ ปั่นป่วนในเครื่องแลกเปลี่ยนความร้อนแบบช่องขนาน Promvonge และคณะ [7] น้ำเสนอถึงพฤติกรรมทาง ความร้อนในในท่อสี่เหลี่ยมจัตุรัสที่มีการติดตั้งแผ่นกั้นวาง เอียงมุมปะทะการไหลเท่ากับ 45° ที่ผนังด้านเดียวด้วย วิธีการเชิงตัวเลขจากการศึกษางานวิจัยที่ผ่านมาพบว่าการ ใช้ตัวสร้างความปั่นป่วนหรือตัวสร้างการหมุนควงที่มี รูปแบบแตกต่างกันนั้นส่งผลต่อคุณลักษณะทางความร้อน และพฤติกรรมการไหลที่เกิดขึ้นแตกต่างกันไป แต่สำหรับ ในงานวิจัยนี้ได้เล็งเห็นข้อดีของการใช้ปีกบางซึ่งสามารถ ้ช่วยเพิ่มการถ่ายเทความร้อนได้ดีและก่อให้เกิดความ สูญเสียความดันในระบบค่อนข้างต่ำ ดังนั้นงานวิจัยฉบับนี้ จึงได้นำแนวคิดการใช้ปีกบางเป็นตัวสร้างการหมุนควงมา ประยุกต์ในท่อจัตุรัสโดยทำการติดตั้งบริเวณกลางหน้าตัด ท่อทดสอบเพื่อขวางการไหลหลัก ซึ่งเป็นการประยุกต์ ลักษณะการติดตั้งจากงานวิจัยอื่นๆ ที่มักนิยมจะติดตั้งปีก บางบนพื้นผิวภายในของท่อทดสอบ เพื่อช่วยเพิ่มค่าการ ถ่ายเทความร้อนและสมรรถนะของเครื่องแลกเปลี่ยนความ ร้อน ภายใต้สภาวะการไหลแบบปั่นป่วนของอากาศภายใต้ เงื่อนไขฟลักซ์ความร้อนที่ผิวคงที่ โดยศึกษาถึงอิทธิพลของ ความเร็วในการไหล มุมปะทะการไหลและอัตราส่วนความ สูงปีก

## 2. ทฤษฎี

# 2.1. การถ่ายเทความร้อน

การถ่ายเทความร้อนที่นำเสนอในงานวิจัยนี้เกิดจาก กระบวนการพาความร้อนที่ใช้อากาศเป็นของไหลทำงาน ใช้ความสัมพันธ์ระหว่างความร้อนที่ได้รับโดยของไหล ทำงานกับปริมาณการพาความร้อนที่เกิดขึ้นในการหาค่า สัมประสิทธิ์การพาความร้อน และทำการนำเสนอค่าการ ถ่ายเทความร้อนที่คำนวณได้ในรูปตัวแปรไร้มิติคือ เลขนัสเซิลท์ ซึ่งเป็นอัตราส่วนการพาความร้อนต่อการนำ ความร้อนภายในท่อขนาดเส้นผ่านศูนย์กลางใดๆ แสดงดัง สมการที่ (1)

$$N u = h D_h / k \tag{1}$$

เมื่อ *k* คือสัมประสิทธิ์การพาความร้อน, *D<sub>h</sub>* คือเส้นผ่าน ศูนย์กลางไฮดรอลิกของท่อจัตุรัส และ *k* คือค่าการนำความ ร้อนของของไหลทำงาน

## 2.2. ตัวประกอบความเสียดทาน

Ν

ค่าตัวประกอบความเสียดทานเป็นตัวแปรไร้มิติของ ค่าความดันตกคร่อมสำหรับการไหลภายในท่อที่ขนาดเส้น ผ่านศูนย์กลางและความยาวท่อใดๆ ด้วยความเร็วของของ ไหลค่าหนึ่ง ดังแสดงสมการที่ (2)

$$f = \frac{2}{\left(L/D_h\right)} \frac{\Delta P}{\rho U^2} \tag{2}$$

เมื่อ  $\Delta P$  คือความดันตกคร่อมบริเวณท่อทดสอบ, L คือความ ยาวท่อช่วงทดสอบ,  $\rho$  คือความหนาแน่นของของไหล ทำงานและ U คือความเร็วเฉลี่ยในแนวแกน โดยคุณสมบัติ ของอากาศพิจารณาที่อุณหภูมิเฉลี่ยของอากาศขาเข้าและ ขาออก ( $T_b$ )

# 2.3. สมรรถนะการเพิ่มการถ่ายเทความร้อน

การหาค่าสมรรถนะการเพิ่มการถ่ายเทความร้อน (η) พิจารณาจากการเพิ่มขึ้นของการถ่ายเทความร้อนและ การสูญเสียจากความเสียดทานของอุปกรณ์ซึ่งเกิดขึ้นควบคู่ กันไป โดยการเพิ่มการถ่ายเทความร้อนนั้นสามารถอธิบาย ได้ด้วยอัตราส่วนของเลขนัสเซิลท์จากท่อที่มีการติดตั้ง อุปกรณ์ที่ช่วยเพิ่มการถ่ายเทความร้อนตัวเลขต่อตัวเลข เซลท์จากท่อที่ไม่มีการติดตั้งอุปกรณ์ที่ช่วยเพิ่มการถ่ายเท ความร้อน ( $Nu/Nu_0$ ) ในทำนองเดียวกันอัตราส่วนตัว ประกอบความเสียดทานสามารถอธิบายได้ด้วยอัตราส่วน ของตัวประกอบความเสียดทานจากท่อที่มีการติดตั้ง อุปกรณ์ที่ช่วยเพิ่มการถ่ายเทความร้อนต่อตัวประกอบ ความเสียดทานจากท่อที่ไม่มีการติดตั้งอุปกรณ์ที่ช่วยเพิ่ม การถ่ายเทความร้อน ( $f/f_0$ ) อัตราส่วนทั้งสองถูกนำไป ประยุกต์สำหรับค่าสมรรถนะการเพิ่มการถ่ายเทความร้อน ภายใต้เงื่อนไขการควบคุมกำลังทำงานของปั้มคงที่ สามารถ แสดงสมรรถนะการเพิ่มการถ่ายเทความร้อนได้ว่า

$$\eta = \frac{h}{h_0}\Big|_{\rm pp} = \left(\frac{\rm Nu}{\rm Nu}_0\right)\left(\frac{f}{f_0}\right)^{-1/3} \tag{3}$$

2.4 เลขเรย์โนลด์

เลขเรย์โนลด์เป็นตัวแปรที่ใช้แสดงเกี่ยวกับพฤติกรรม การไหลของของไหลทำงาน ซึ่งสามารถแสดงในรูปตัวแปร ไร้มิติได้ดังนี้

$$Re=UD_{h}/v \tag{4}$$

## 3. อุปกรณ์การทดลอง

## 3.1. ปีกบาง

ปีกบางทำจากแผ่นอะลูมิเนียมมีความหนา 0.3 มิลลิเมตร ติดตั้งบนโครงลวดและสอดชิ้นงานตามแนว ทแยงมุมของหน้าตัดท่อเพื่อให้ชิ้นงานลอยอยู่บริเวณ กึ่งกลางหน้าตัดท่อทดสอบ โดยทำการศึกษาอิทธิพลของ มุมปะทะการไหล (**0**) จำนวน 3 ค่า ได้แก่ 30° 45° และ 60° อัตราส่วนความสูง (BR=e/H) จำนวน 3 ค่า ได้แก่ 0.1 0.15 และ 0.2 ที่มีอัตราส่วนระยะพิตต์คงที่ (PR=P/H) เท่ากับ 1.0 ดังแสดงในภาพที่ 1 3.2. ชุดทดสอบการแลกเปลี่ยนความร้อน

ภาพที่ 2 แสดงลักษณะการติดตั้งชุดอุปกรณ์ทดสอบ การแลกเปลี่ยนความร้อนประกอบด้วยชุดท่อแลกเปลี่ยน ความร้อนชนิดท่อจัตุรัสเป็นท่ออะลูมิเนียมหนา 3 มิลลิเมตร ขนาดหน้าตัดท่อกว้าง 45 มิลลิเมตร ความยาว ช่วงท่อทดสอบ 1000 มิลลิเมตรผนังด้านนอกของท่อช่วง ทดสอบทำการติดตั้งฮีตเตอร์สำหรับให้ความร้อนภายใต้ สภาวะเงื่อนไขฟลักซ์ความร้อนที่ผิวคงที่และมีการติดตั้ง เทอร์โมคลัปเปิ้ลชนิด K จำนวน 28 ตัว ที่ผนังด้านบน ด้านล่างและด้านข้าง สำหรับวัดอุณหภูมิที่ผิวของท่อช่วง ทดสอบ บริเวณทางเข้าและออกจากท่อช่วงทดสอบมีการ ติดตั้งเซนเซอร์วัดอุณหภูมิชนิด RTD ตำแหน่งละหนึ่งตัว สำหรับวัดอุณหภูมิทางเข้าและออกจากท่อช่วงทดสอบของ อากาศที่ใช้เป็นสารทำงาน ผนังด้านนอกของท่อช่วง ทดสอบมีการหุ้มฉนวนเพื่อป้องกันความร้อนสูญเสียออก จากระบบ สายวัดอุณหภูมิทั้งหมดจะต่อเข้าเครื่อง Data Loger และเชื่อมต่อไปยังเครื่องคอมพิวเตอร์เพื่อบันทึก และแสดงผลอากาศถูกจ่ายจากพัดลมความดันสูงขนาด 1.45 kW มีอินเวอร์เตอร์ทำหน้าที่ควบคุมความเร็วของพัด ้ลมเพื่อให้ได้ปริมาณของอากาศตามที่ต้องการ อัตราการ ไหลของอากาศคำนวณได้จากการวัดค่าความดันตกคร่อม แผ่นออริฟิคที่สร้างตามมาตรฐาน ASME [8] โดยใช้มานอ มิเตอร์แบบเอียง (Inclined manometer) การทดสอบ กำหนดอยู่ในช่วงการไหลแบบปั่นป่วนที่ค่าเลขเรย์โนลดส์ ระหว่าง 6000-26.000 ค่าความดันตกคร่อมช่วงท่อ ทดสอบวัดค่าโดยเครื่องวัดความดันแตกต่างแบบดิจิตอล (Digital manometer)





4.1. การทวนสอบท่อผิวเรียบ



ภาพที่ 1 ท่อช่วงทดสอบติดตั้งปีกบาง



ภาพที่ 2 ชุดทดสอบการแลกเปลี่ยนความร้อน ชนิดท่อจัตุรัส

ภาพที่ 3 ความสัมพันธ์ระหว่าง Nu และ f กับ Re ของการทวนสอบท่อผิวเรียบ

การตรวจสอบความน่าเชื่อถือของการติดตั้งชุดทดสอบ เครื่องแลกเปลี่ยนความร้อนกรณีท่อผิวเรียบค่าการถ่ายเท ความร้อนจะแสดงในพจน์ของเลขนัสเซิลท์สำหรับนำไป เปรียบเทียบกับสหสัมพันธ์ของ Dittus-Boelter และ ค่าการสูญเสียความดันจะแสดงในพจน์ตัว Gnielinski ประกอบเสียดทานสำหรับนำไปเปรียบเทียบกับสหสัมพันธ์ ของ Petukhov และ Blasius ตามอ้างอิงเอกสาร [9] พบว่าแนวโน้มของเลขนัสเซิลท์และตัวประกอบเสียดทาน สอดคล้องกับผลจากสหสัมพันธ์ เลขนัสเซิลท์มีค่า คลาดเคลื่อนเฉลี่ยเท่ากับ ±4% และ ±5% เมื่อ เปรียบเทียบกับสหสัมพันธ์ของ Dittus-Boelter และ Gnielinsk เตามลำดับในขณะที่ตัวประกอบเสียดทานเมื่อ เปรียบเทียบกับสหสัมพันธ์ของ Petukhov และ Blasius มี ค่าคลาดเคลื่อนเฉลี่ยเท่ากับ ±3% และ ±5% ตามลำดับ ดังแสดงในภาพที่ 3

#### 4.2. เลขนัสเซิลท์

ความสัมพันธ์ระหว่างเลขนัสเซิลท์กับเลขเรย์โนลด์แสดงใน ภาพที่ 4 พบว่าแนวโน้มค่าเลขนัสเซิลท์ของกรณีศึกษา ทั้งหมดรวมทั้งมีค่าเพิ่มสูงขึ้นเมื่อเลขเรย์โนลด์เพิ่มขึ้น เนื่องจากเลขเรย์โนลด์ที่เพิ่มขึ้นหมายถึงความเร็วในการ ไหลที่เพิ่มสูงสุดย่อมส่งผลลักษณะความปั่นป่วนที่รุนแรงขึ้น นอกจากนี้ยังแสดงถึงปริมาณการไหลของอากาศเย็นเข้าสู่ ระบบที่เพิ่มมากขึ้น ทำให้มีของไหลทำงานสำหรับรับการ แลกเปลี่ยนความร้อนที่มากขึ้น



ภาพที่ 4 ความสัมพันธ์ระหว่าง Nu กับ Re



ภาพที่ 5 ความสัมพันธ์ระหว่าง Nu/Nu<sub>0</sub> กับ Re

ภาพที่ 5 แสดงความสัมพันธ์ของอัตราส่วนของการถ่ายเท ความร้อนของกรณีติดตั้งปีกบางต่อกรณีท่อผิวเรียบ พบว่า การติดตั้งปีกบางทุกกรณีให้ค่าเลขนัสเซิลท์ที่สูงกว่ากรณี ท่อผิวเรียบ เนื่องจากปีกบางทำใหเกิดการไหลแบบหมุน ควงตามแนวยาวส่งผลให้เกิดผสมผสานของของไหลที่ดี ระหว่างกระแสของไหลกับผิวร้อนของท่อและระหว่าง กระแสของไหลร้อนกับกระแสของไหลที่มีอุณหภูมิต่ำกว่า ภายท่อช่วงทดสอบ จึงช่วยให้เกิดกระบวนการการ แลกเปลี่ยนความร้อนที่เพิ่มมากขึ้นค่าเลขนัสเซิลท์มีค่า เพิ่มขึ้นตามขนาดมุมปะทะการไหลและอัตราส่วนความสูง ปีกเพราะว่าลักษณะปีกบางที่มีมุมปะทะการไหลและ อัตราส่วนความสูงปีกมีค่าสูงกว่าจะขัดขวางการไหลได้ มากกว่า ทำให้การไหลแบบหมุนควงและการไหลแบบ ปั่นป่วนที่รุนแรงกว่า โดยพบว่าที่ **0**=60° ให้ค่าการถ่ายเท ความร้อนเฉลี่ยที่สูงกว่า  $\pmb{lpha}$ =45° และ 30° ประมาณ 2% และ 6% ตามลำดับ และภายใต้มุมปะทะการไหลเดียวกัน จะเห็นว่า BR=0.15 ให้ค่าการถ่ายเทความร้อนเฉลี่ยที่สูง และ BR=0.05 ประมาณ 5% และ กว่า BR=0.10 13%,9% และ 14% และ 11% และ 15% สำหรับ **0**=30°, 45° และ 60°ตามลำดับ

## 4.3. ตัวประกอบความเสียดทาน

อิทธิพลผลของการติดตั้งปีกบางต่อการสูญเสียความ ดันภายในท่อทดสอบแสดงในภาพที่ 6 พบว่าการติดตั้งปีก บางส่งผลให้ค่าตัวประกอบเสียดทานมีแนวโน้วลดลงเมื่อ ความเร็วในการไหลเพิ่มสูงขึ้น เนื่องจากความปั่นป่วนใน การไหลที่เพิ่มสูงขึ้นตามความเร็วในการไหลนั้นจะทำให้ ความสูญเสียที่เกิดขึ้นภายของไหลที่ค่าลดลง วารสารวิชาการคณะเทคโนโลยีอุตสาหกรรม : เทพสตรี I-TECH ปีที่ 10 ฉบับที่ 13 กรกฎาคม-ธันวาคม 2558



ภาพที่ 7 ความสัมพันธ์ระหว่าง *f/f*<sub>0</sub> กับ Re

ภาพที่ 7 แสดงความสัมพันธ์ของอัตราส่วนของตัวประกอบ ความเสียดทานของกรณีติดตั้งปีกบางต่อกรณีท่อผิวเรียบ พบว่าการติดตั้งปีกบางทุกกรณีให้ค่าตัวประกอบความ เสียดทานที่สูงกว่ากรณีท่อผิวเรียบเช่นเดียวกับผลของการ ถ่ายเทความร้อนเพราะการติดตั้งปีกบางเข้าไปภายในท่อ ทดสอบจะทำให้พื้นที่ในการไหลของของไหลลดลงและปีก บางที่ติดตั้งจะเข้าไปขัดขวางการไหลเป็นปัจจัยให้เกิดการ สูญเสียความดันที่เพิ่มมากขึ้น ซึ่งการสูญเสียความดันนั้นจะ ส่งผลโดยตรงกับค่าตัวประกอบความเสียดทานขนาดมุม ปะทะการไหลและอัตราส่วนความสูงปีกที่เพิ่มสูงขึ้นจะให้ ค่าตัวประกอบความเสียดทานที่เพิ่มสูงขึ้นเนื่องจากลักษณะ ทางกายภาพของปีกบางที่มุมปะทะการไหลและอัตราส่วน ความสูงปีกมีค่าสูงกว่าจะขัดขวางการไหลได้มากกว่าและ ลดพื้นที่การไหลให้น้อยลงทำให้เกิดการสูญเสียความดันที่ สูงมากกว่าโดยพบว่าค่าตัวประกอบความเสียดทานเฉลี่ยที่  $\pmb{\alpha}$ =60° มีค่าสูงกว่า  $\pmb{\alpha}$ =45° และ 30° เท่ากับ 23%, 26% และ 41% และ 77%, 91% และ 141% สำหรับ BR=0.05, 0.10 และ 0.15 ตามลำดับและภายใต้มุมปะทะ การไหลเดียวกันจะเห็นว่า BR=0.15 ให้ค่าตัวประกอบ ความเสียดทานเฉลี่ยที่สูงกว่า BR=0.10 และ BR=0.05 ประมาณ 20% และ 33%, 36% และ 61% และ 52% และ 82% สำหรับ  $\pmb{\alpha}$ =30°, 45° และ 60°ตามลำดับ

# 4.4. สมรรถนะการเพิ่มการถ่ายเทความร้อน



ภาพที่ 8 ความสัมพันธ์ระหว่าง  $\eta$  กับ Re

ค่าสมรรถนะการเพิ่มการถ่ายเทความร้อนจากการศึกษา อิทธิพลขนาดมุมปะทะการไหลอัตราส่วนความสูงปีกและ อัตราเร็วของการไหลนำเสนอในภาพที่ 8 พบว่าค่า

สมรรถนะการเพิ่มการถ่ายเทความร้อนมีแนวโน้มลดลงเมื่อ เลขเรย์โนลด์เพิ่มสูง อันเป็นผลสืบเนื่องมาจากที่เลขเรย์ โนลด์เพิ่มสูงอัตราส่วนของการถ่ายเทความร้อนของกรณี ติดตั้งปีกบางต่อกรณีท่อผิวเรียบมีแนวโน้มลดลงในขณะที่ อัตราส่วนของตัวประกอบความเสียดทานมีแนวโน้มเพิ่ม ้สูงขึ้น เมื่อพิจารณาที่อัตราส่วนความสูงปีกเดียวกันสำหรับ แต่ละมุมปะทะการไหล จะได้ว่า **0**=30° ให้ค่าสมรรถนะ การเพิ่มการถ่ายเทความร้อนสูงสุดและมีค่าลดลงเมื่อขนาด มุมปะทะเพิ่มมากขึ้น เมื่อพิจารณาภายใต้มุมปะทะการไหล เดียวกัน พบว่าค่าสมรรถนะการเพิ่มการถ่ายเทความร้อน **ต**=30° เกิดขึ้นที่ BR=0.10 ในขณะที่ **ต**=45° สงสดที่ และ60° เกิดขึ้นที่ BR=0.05 ทั้งสองกรณีและจะมีค่าลดลง ถ้าอัตราส่วนความสูงปีกมีค่าเพิ่มมากขึ้น ซึ่งแสดงให้เห็นว่า เมื่อขนาดขนาดมุมปะทะการไหลเพิ่มมากขึ้นค่าอัตราส่วน ความสูงปีกที่ใช้จะต้องมีค่าลดลง เพื่อลดปัจจัยที่ทำให้เกิด การสูญเสียความดันจากการขัดขวางการไหล ภายใต้ เงื่อนไขและขอบเขตการศึกษาวิจัยนี้ พบว่าค่าสมรรถนะ การเพิ่มการถ่ายเทความร้อนสูงสุดมีค่าเท่ากับ 1.49 เกิดขึ้นในกรณีมุมปะทะการไหลเท่ากับ 30° อัตราส่วน ความสูงปีกเท่ากับ 0.10 และที่เลขเรย์โนลด์ประมาณ 6500

## 5. สรุปผลการวิจัย

การประยุกต์ปีกบางสำหรับเป็นตัวสร้างความปั่นป่วน โดยทำการศึกษาถึงอิทธิพลของขนาดมุมปะทะการไหลและ อัตราส่วนความสูงปีกที่มีต่อการถ่ายเทความร้อน การ สูญเสียความดันและสมรรถนะการเพิ่มการถ่ายเทความ ร้อนในเครื่องแลกเปลี่ยนความร้อนชนิดท่อจัตุรัสในช่วงการ ไหลแบบปั่นป่วนที่เลขเรย์โนลด์ตั้งแต่ 6000 ถึง 26,000 ภายใต้เงื่อนไขสภาวะฟลักซ์ความร้อนที่ผิวคงที่ พบว่าการ ใช้ปีกบางให้ค่าการถ่ายเทความร้อนและการสูญเสียความ ดันที่สูงกว่าท่อผิวเรียบมีค่าระหว่าง 1.55–2.29 และ 2.27–8.48 เท่าของท่อผิวเรียบ ตามลำดับขึ้นอยู่กับแต่ละ กรณีศึกษาโดยค่าการถ่ายเทความร้อนและการสูญเสีย ความดันจะแปรผันกับขนาดมุมปะทะการไหลและ อัตราส่วนความสูงปีก ค่าสมรรถนะการเพิ่มการถ่ายเท ความร้อนซึ่งเป็นความสัมพันธ์ระหว่างอัตราส่วนการ เพิ่มขึ้นของการถ่ายเทความและอัตราส่วนการเพิ่มขึ้นของ ตัวประกอบเสียดทานที่ได้จากกการศึกษานี้แสดงให้เห็นถึง ความสัมพันธ์ระหว่างมุมปะทะการไหลกับอัตราส่วนความ สูงปีก โดยค่าสูงสุดเกิดขึ้นในกรณีมุมปะทะการไหลเท่ากับ 30° อัตราส่วนความสูงปีกเท่ากับ 0.10 และที่เลขเรย์โนลด์ ประมาณ 6500 มีค่าเท่ากับ 1.49

## 6. กิตติกรรมประกาศ

ขอขอบคุณสำนักงานกองทุนสนับสนุนการวิจัยโครงการ ปริญญาเอกกาญจนาภิเษก (คปก.)

## 7. เอกสารอ้างอิง

- [1] S. Eiamsa-ard, K. Wongcharee, P. Eiamsa-ard, C. Thianpong, "Thermohydraulic investigation of turbulent flow through a round tube equipped with twisted tapes consisting of centre wings and alternate-axes," Experimental Thermal and Fluid Science, 34, 1151-1161, 2010.
- [2] P. Murugesan, K. Mayilsamy, S. Suresh, "Turbulent Heat Transfer and Pressure Drop in Tube Fitted with Square-cut Twisted Tape," Chinese Journal of Chemical Engineering, 18(4), 609-617, 2010.
- [3] P. Promvonge, "Thermal performance in circular tube fitted with coiled square wires,"

Energy Conversion and Management,49(5), 980–987, 2008.

- [4] G. Zhou, Q. Ye, "Experimental investigations of thermal and flow characteristics of curved trapezoidal winglet type vortex generators," Applied Thermal Engineering, 37, 241–248, 2012.
- [5] G. Tanda, "Heat transfer in rectangular channel with transverse and V-shaped broken ribs," International Journal of Heat and Mass Transfer, 47, 229-243, 2004.
- [6] T. Chompookham, C. Thianpong, S. Kwankaomeng, P. Promvonge, "Heat transfer augmentation in a wedge-ribbedchannel using winglet vortex generators," International Communications in Heat and Mass Transfer, 37, 163–169, 2010.
- [7] P. Promvonge, S. Sripattanapipat, S. Tamna, S. Kwankaomeng, C. Thianpong, "Numerical investigation of laminar heat transfer in a square channel with 45 inclined baffles," International Communications in Heat and Mass Transfer, 37(2), 170-177, 2010.
- [8] ASME, Standard Measurement of fluid flow in pipes using orifice, nozzle and venture. ASME MFC–3M-1984, United Engineering Center 345 East 47<sup>th</sup>Street, New York, 1–56,1984.
- [9] Incropera FP, Witt PD, Bergman TL, Lavine AS. Fundamentals of Heat and Mass Transfer.John-Wiley & Sons, 2006.