

บทนำ

โปรแกรม Autodesk Inventor Professional 2013 ในปัจจุบันได้รับความนิยมในวงการอุตสาหกรรม การ ออกแบบต่างๆ มีแนวโน้มเพิ่มสูงมากขึ้นเรื่อยๆ เนื่องจากเป็นซอฟแวร์ที่มีความสามารถสูง สามารถเลือกใช้งาน ให้ เหมาะสมกับการออกแบบผลิตภัณฑ์ได้เกือบทุกประเภท ใช้งานง่าย

ในโปรแกรม Autodesk Inventor Professional 2013 เป็นโปรแกรม 3 มิติของบริษัท Autodesk Inc ประเทศสหรัฐอเมริกา ซึ่งมีลูกค้าทั่วโลกมากกว่า 10 ล้านคน ซึ่งบริษัทนี้ในนามผู้ผลิตโปรแกรม AutoCAD เสียส่วน ใหญ่ การเขียนแบบ 2 มิติ นับว่าเป็นโปรแกรมที่ใช้งานได้ดีที่สุด แต่ถ้าเป็นงาน 3 มิติ บริษัท Autodesk Inc. ได้ พัฒนาโปรแกรม Autodesk Inventor Professional 2013 มาอย่างต่อเนื่องและไม่หยุดยั้ง โดยโปรแกรมจัด แบ่งเป็นกลุ่มๆ เพื่อให้สามารถใช้ครอบคลุมกับงานทุกด้าน ความสามารถต่างๆ มีดังนี้

1. งานด้าน Solid Modeling & Surface Modeling

ใช้เทคโนโลยี Digital Prototyping มาช่วยในการออกแบบผลิตภัณฑ์ต่างๆ ให้เสมือนงานจริงดังรูปที่ 1.1 โดยออกแบบเป็นงาน 3D Solid และ Surface เข้าด้วยกันอย่างกลมกลืน รวดเร็วและง่ายดายมากขึ้นด้วยเทคโนโลยี Multi body

รูปที่ 1.1 แสดงตัวอย่างงานที่ใช้งานเทคโนโลยี Digital Prototyping ออกแบบ

2. งานด้านท่อ และเดินสายไฟ [Cable & Harness and Tube & Pipe]

ใช้สร้างงานท่อต่างๆ รวมไปถึงการเดินสายไปในส่วนของอุปกรณ์ คอมพิวเตอร์ภายในรถยนต์ รวมไปถึง เครื่องจักรต่างๆ ดังรูปที่ 1.2

รูปที่ 1.2 แสดงตัวอย่างงานเดินท่อและเดินสายไฟโดยใช้ Autodesk Inventor Professional 2013

3. งานจำลองการเคลื่อนไหวของชิ้นส่วนและการวิเคราะห์ความแข็งแรง[Dynamic Simulation & Stress Analysis]

มีเทคโนโลยีในเอลิเมนต์วิเคราะห์ซิ้นงานที่เป็นชิ้นเดียว และงานที่ประกอบเข้าด้วยกันไม่ว่าชิ้นงานเล็กหรือ งานใหญ่ รวมถึงการวิเคราะห์และจำลองการเคลื่อนไหวของชิ้นส่วนต่างๆดังรูป 1.3 และรายงานผลออกมาเป็น กราฟได้

รูปที่ 1.3 แสดงการใช้ Autodesk Inventor Professional 2013จำลองการเคลื่อนไหว

4. งานด้านสร้างแม่พิมพ์ [Inventor Tooling]

มีเทคโนโลยีการออกแบบชิ้นงานพลาสติกอันครบครั้น นอกจากมีเทคโนโลยีการออกแบบโมลด์ฉีดพลาสติก ดังรูปที่ 1.4 ได้โดยง่าย และโปรแกรมยังมีออฟชั่นสำหรับการวิเคราะห์ปัญหาที่อาจเกิดขึ้นขณะฉีดพลาสติก เช่น ทางเข้า [Gate Location & Runner] ของ Core & Cavity การไหลของน้ำพลาสติก [Full Analysis] และระบบหล่อ เย็น [Cooling Channel] เป็นต้น

รูปที่ 1.4 แสดงการใช้ Inventor Tooling สร้างแม่พิมพ์

5. เชื่อมต่อโปรแกรมด้านการผลิต [InventorCAM]

สามารถต่อเข้ากับเครื่องจักร CNC หรือแปลงเป็น G-CODE, M-CODE ได้โดยการใช้งาน ร่วมกับโปรแกรม InventorCAM ดังรูปที่ 1.5 ซึ่งสามารถรองรับกับเครื่องจักรได้ถึง 5 แกน [5 Axis] ทุกชนิดที่มีการใช้งานในปัจจุบัน

รูปที่ 1.5 แสดงการใช้ Autodesk Inventor ร่วมกับ InventorCAM

หน้าต่าง Getting Started

โปรแกรม Autodesk Inventor มีกลุ่มเครื่องมือต่างๆ ไว้บริเวณส่วนบนของหน้าต่าง ดังรูปที่ 1.6 ซึ่ง Get Started จะเป็นแท็ปแรกที่ปรากฏโดยอัตโนมัติเมื่อเปิดโปรแกรม ประกอบด้วยกลุ่มเครื่องมือดังนี้

รูปที่ 1.6 แสดงหน้าต่าง Getting Started

กลุ่ม Launch

New เป็นไอคอนที่คลิกเมื่อต้องการเริ่มสร้างงานใหม่

Open เป็นไอคอนที่คลิกเมื่อต้องการเปิดไฟล์ที่สร้างแล้วบันทึกเก็บไว้

Project เป็นไอคอนที่คลิกเมื่อต้องการสร้างโปรเจคใหม่ หรือเชื่อมต่อกับโปรเจคเก่า

กลุ่ม New Feature

What 's new เป็นส่วนที่อธิบายถึงความสามารถใหม่ๆ ของโปรแกรม

	Content Cente	r การตั้งค่า Content Center ซึ่งเป็นตำแหน่งการจัดเก็บชิ้นส่วนมาตรฐานของ			
โปรแกร	ั้ม				
	Drawing	การปรับตั้งการสร้างภาพเขียนแบบ [Drawing] ของโปรแกรม			
Sketch ตั้งวิธีการสเกตซ์ภาพ และการแสดงผลภาพที่สเกตซ์					
	Part	การปรับตั้งวิธีการสร้างชิ้นส่วน [Part] ของโปรแกรม			
	Save	การกำหนดวิธีการบันทึกไฟล์ของโปรแกรม			
	File	การกำหนดไฟล์ตำแหน่งของไฟล์ต่างๆ			
	Colors	การปรับเปลี่ยนสีของพื้นหลัง [Background]			
	Display	การปรับการแสดงผลชองภาพชิ้นงานที่เขียนบนหน้าจอ ความสามารถขึ้นอยู่กับการ์ดจอ			
	Hardware	เป็นการปรับตั้งโปรแกรมให้เหมาะสมกับการ์ดจอภาพของคอมพิวเตอร์			
	Prompts	การกำหนดการแสดงของข้อความต่างๆ ขณะใช้โปรแกรม			
	Assembly	การกำหนดวิธีการประกอบกันของชิ้นส่วนประกอบ [Assembles]			

หน้าจอติดต่อกับผู้ใช้ [User Interface]

โปรแกรม Autodesk Inventor จะมีส่วนประกอบต่างๆ ดังรูป 1.7

รูปที่ 1.7 แสดง หน้าจอติดต่อกับผู้ใช้ [User Interface]

1. Application Menu คลิกเพื่อสร้างไฟล์เปิดไฟล์ บันทึกไฟล์ หรือเพื่อใช้คำสั่งอื่นๆ นอกจากนี้ยังแสดง รายการของไฟล์ล่าสุดที่เคยเปิด

2. Quick Access Toolbar คลิกเพื่อออกแบบ สามารถคลิกเลือกใช้ได้รวดเร็วขึ้น ได้แก่คำสั่งสร้างไฟล์เปิด ไฟล์ บันทึกไฟล์ คำสั่งยกเลก [Undo] หรือทำซ้ำ [Redo] เป็นต้น

3 - 4. Menu Bar or Ribbon เป็นที่อยู่ของกลุ่มเครื่องมือต่างของโปรแกรม โดยคลิกเลือกเมนูที่ต้องการ

แถบเครื่องมือต่างๆ ของเมนูนั้นจะปรากฏให้ใช้งาน นอกจากนั้นผู้ออกแบบยังสามารถปรับเปลี่ยนลักษณะ การแสดงไอคอนของแถบเครื่องได้ตามต้องการ

5. Bowser Bar เป็นที่อยู่ของ Bowser จะแสดงประวัติขั้นตอนการทำงานว่าใช้เครื่องมือชนิดใด วิธีใด และ พร้อมที่จะแก้ไขได้ตลอดเวลา

- 6. View Cube เป็นตำแหน่งที่จะคลิกเพื่อเลือก มุมมองต่างๆ ของชิ้นงาน
- 7. Common View Commands คลิกเพื่อง่ายสะดวก ในการเลือกเพื่อแก้ไข ชิ้นงาน
- 8. Graphics Window เป็นพื้นที่ที่ใช้ออกแบบ และเขียนแบบ2 มิติ และ 3 มิติ

กลุ่มคำสั่ง Constrain สำหรับกำหนดใช้ความสัมพันธ์ต่างๆ

การให้ขนาดและการกำหนดความสัมพันธ์ หรือการบังคับคุณสมบัติเส้นต่างๆ มีความสำคัญและช่วย อำนวยความสะดวก ในการเขียนแบบ ดังตัวอย่างในรูป 1.8

□ Constraints								
Constraint	Description	ก่อนใช้ Constraint	หลังใช้ Constraint					
×	Smooth : ให้เส้น Spline มีความต่อเนื่องแบบ G2 กับเส้นตรงหรือ Arc	\sim	\sim					
777	Horizontal : ให้เส้นที่เลือกขนานกับแกน X ของ ระบบพิกัดของสเก็ตนั้น							
1	Vertical : ให้เส้นที่เลือกขนานกับแกน Y ของระบบ พิกัดของสเก็ตนั้น							
=	Equal : ให้เส้นที่เลือกมีความยาวเท่ากัน หรือให้ วงกลมมีขนาดรัศมิโตเท่ากัน	\odot	\odot					
כן	Symmetric : ให้วัตถุที่เลือกมีความ สมมาตรกัน							
8	Fix : ให้วัตถุที่เลือกอยู่กับที่							

รูปที่ 1.8 แสดง กลุ่มคำสั่ง Constraints

ตัวอย่าง การสร้างชิ้นงาน ด้วยคำสั่ง Extrude, Hole, Fillet, Chamfer

1.การสร้าง ชิ้นงานใหม่ New Sketch มีลำดับขั้นตอนดังต่อไปนี้

2.ใช้คำสั่ง Extrude

3.การแก้ไขชิ้นงาน โดยใช้คำสั่ง Edit Sketch และ คำสั่ง Fillet

4. การใช้คำสั่ง Fillet และคำสั่ง Chamfer เพื่อทำการลบมุม

5 .การใช้คำสั่ง Hole เพื่อทำการเจาะรู ตามแบบ และ ขนาดต่างๆ ดังตัวอย่าง

□ Hole									
<complex-block><complex-block><complex-block><complex-block></complex-block></complex-block></complex-block></complex-block>									
□ Hole : Placement									
 From Sketch ดำแหน่งรูเจาะกำหนดจาก Sketch (ต้องมี Sketch ก่อน) การกำหนดดำแหน่งรูเจาะใช้ได้ทั้ง จาก คำสั่ง Point และ End Point ของ เส้นตรงหรือเส้นโค้ง เจาะได้หลายรูพร้อมกัน (ขนาด เดียวกัน) 	Placement From Sketch Centers Solids								
 Linear ดำแหน่งรูเจาะกำหนดจากผิวชิ้นงานที่ เรียบเท่านั้น (ไม่ต้องมี Sketch ก่อน) ด้องกำหนดดำแหน่งรูเจาะอ้างอิงจาก ขอบชิ้นงานที่เป็นเส้นตรงทั้ง 2 ด้าน เจาะได้ทีละรู 	Placement Trinear Face Solids Reference 1 Colored Reference 2 Drif Point	4							

6.การใช้คำสั่ง Hole Placement

7 .การใช้คำสั่ง Hole Drill Point

□ Hole : Drill Point, Termination								
o Drill Point								
• Termination Termination Distance Through All To		Distance • เจาะรูลึกตามระยะที่กำหนด • Through All • เจาะรูทะลุชิ้นงาน • To						
OK Ca	Apply	เจาะรูถึงผิวที่กำหเ	นด					
		Termination To	v 📐 🔄					
Hole : Options								
Simple Hole	รูเจาะแบบปกติธรรมดา							
Clearance Hole	รูเจาะแบบให้สกรูร้อยผ่าน สามารถเลือกชนิดและขนาด ของสกรูตามมาตรฐานได้ และกำหนด Clearance ได้	Fastener Standard Fastener Type Size Fit	DIN Socket Head Cap Screw DIN EN I M6	ISO 4762				
Tapped Hole	รูเจาะแบบมีเกลียว สามารถเลือกชนิดและขนาด ของเกลียวตามมาตรฐานได้	Threads Thread Type ISO Metric profile Size 6 Class 6H	Designation M6x1 Diameter Minor V	Full Depth Direction Right Hand Left Hand				
Taper Tapped Hole	รูเจาะแบบมีเกลียวเตเปอร์ สำหรับใช้กับข้อต่อต่าง ๆ สามารถเลือกชนิดและขนาด ของเกลียวเตเปอร์ตาม มาตรฐานได้	Threads Thread Type NPT for PVC Pipe and F Size 3/8 Class	Itting Designation 3/8 - 18 NPT Diameter	Full Depth Direction Right Hand Left Hand				

8 .ขั้นตอนสุดท้ายการเลือกเฉดสีให้กับชิ้นงาน ตามความต้องการ

บทสรุปโปรแกรม Autodesk Inventor Professional 2013

โปรแกรมมีความสามารถในการสร้าง และออกแบบ โมเดล 3 มิติได้อย่างง่ายดาย ใช้งานง่ายออกแบบได้ สมจริงและ รวดเร็วปัจจุบันโปรแกรมนี้ จึงได้รับความนิยมในวงการอุตสาหกรรมออกแบบต่างๆ อย่างกว้างขว้าง เหมาะสำหรับ ผู้ที่เริ่มต้นและ พร้อมที่จะก้าวเข้าสู่ความเป็น มืออาชีพ ทางด้านการออกแบบ

บรรณานุกรม

[1] NR Automation systems company